0°

“ChatGPT的问题、风险与机遇”会议综述

  主讲人:天津大学智算学部王博副教授。王博老师担任天津大学智算学部语言与心理计算研究组负责人。曾先后于微软亚洲研究院、意大利帕多瓦大学、华盛顿大学等访问工作。在自然语言处理、智能对话、心理计算领域具有十余年丰富研究经验。在高水平期刊及会议上发表论文四十余篇,主持国家自然基金、国家重点研发项目子课题等国家级项目多项。

  1 引言:什么是ChatGPT?

  王博老师通过quick question的问答方式解答常见的关于ChatGPT 专业问题,通过这些问题可以使我们快速掌握ChatGPT的相关知识点。

  1. 问:ChatGPT是一个问答/对话机器人吗?

  答:从用户的角度看,它的形式就是一个对话机器人,准确的说是“续写”机器人。从技术上来讲,GPT它从来都不是一个专门为问答和对话设计的系统。ChatGPT是一个语言模型,语言模型就是刻画语言最基本的规律。那么如何去建立语言模型呢?可以只做一件事情:掌握词汇间的组合规律,而掌握这种规律最直接的表现就是让语言学会“续写”,类似于我们人类的“接话茬”。当我们给出前N个词汇的时候,如果一个模型能够告诉我们第“N+1”个词汇大概率会是什么,我们就认为模型掌握了语言的基本规律。ChatGPT就是这样一个语言模型。虽然ChatGPT看起来能完成各种任务,但它本质上只做这一件事情:续写,告诉你第“N+1”个词是什么。

  2. 问:“续写”为什么能解决各种各样的问题?

  答:为什么这么一个简单的接话茬能力让ChatGPT看起来能够解决各种各样的任务呢?因为我们人类大部分的任务都是以语言为载体的。当我们前面说了一些话,它把接下来的话说对了,任务就完成了。ChatGPT作为一个大语言模型,目的就是“把话说对”,而把话说对这件事情可以在不知不觉中帮我们完成各种任务。

  3. 问:ChatGPT的答案是从网上搜索来的吗?

  答:这个说法既对也不对。说它对:确实很多语料都是来自于互联网或者书籍等,都来源于人类已经创造出来的信息。说它不对:是因为他从来没有整句整段的把这些东西摘抄输出,而是一个词一个词地生成出来的。它所输出的每一句话、每一段话,可能都是这个世界上从来没有出现过的。从这个角度来说,ChatGPT既创造了知识又没有创造知识。它可能还会带来“知识收敛”的问题。

  4. 问:ChatGPT是不是已经拥有了意识?(像流浪地球中的Moss一样)

  答:ChatGPT-4已经通过了图灵测试,难以从行为上将其与普通人区分。然而,这个问题需要回到哲学层面去思考。这里我们先给出三个心理学范畴的概念:意识、自我意识和自由意志。(1)意识是感知事物的能力,从这个角度来说人工智能早就具备了这一能力,例如人脸识别。(2)自我意识是一种特殊的意识,就是“自我”是感知对象。如果你所感知的对象是你自己的思想和行为,就叫做自我意识。你知道自己正在想什么,知道自己正在做什么。这一点也不难,图灵时代就已经在理论上实现了。我们只需要做两个模型:一个模型用来感知客观世界,另外一个模型来感知这个正在感知客观世界的模型就可以了。原则上模型就拥有了一层的简单自我意识。但是要注意,人类的自我意识具有“无限递归”的特征,这一点又导致了这个问题的复杂性。(3)自由意志是指在自我意识的基础上,能够进一步地主动操纵自己行为的能力。那么ChatGPT是不是拥有了自由意志,这一点就很难判断了。

  5. 问:ChatGPT会造成大量失业吗?

  答:这是很多自媒体炒作的一个热点,现在也成了一种广泛焦虑。(1)我个人的观点认为,目前没有任何一个岗位,有可能被ChatGPT这样的技术完全替代,大部分工作还是需要人工去修订和审计。就好比目前自动驾驶的技术已经相当成熟了,但是仍然很少有人敢闭着眼睛去使用自动驾驶。(2)但是,ChatGPT可以显著降低很多工作的工作量。(3)另外,这个问题也取决于我们社会的制度和政策。如果说我们在某些必要的情景下,需要放弃所谓的技术进步来换取人类的生活幸福,那么这样做也是合理的,因为我们社会发展的目的也是为了人类的福祉。(4)从历史的角度来看,技术的进步虽然短期内会造成某些工作的消失,会有阵痛,但整体上来说会将人类推向更高层次的发展水平。

  6. 问:ChatGPT是不是像大数据、区块链、物联网一样就是一阵风,被严重高估?

  答:以大数据、区块链和物联网为例,虽然它们现在已经不是媒体的宠儿,但它们并没有消失。恰恰相反,它们已经深深地融入到了我们的生活当中,转化为了生产力。与这三者相比,ChatGPT成熟度其实更高。ChatGPT绝对不是一阵风。它实际上在概念上被高估,而在应用中被低估了。现在我们需要思考是,如何让ChatGPT这一成熟的生产力,真正在生活中去用起来。

  2 ChatGPT因何而强大:人工智能背景下的大语言模型简史

  王博老师从更加宏大的背景即人类生产力发展史和人工智能发展史层面,来讲述人工智能背景下的大语言模型简史。

  (一)生产力视角下的智能革命

  农业革命:将人们从日常的食物采集当中解放出来,获得了稳定的食物来源,有大量的闲暇时间,可以进行创造性的劳动。

  工业革命:使人类获得了体力之外的动力,从体力劳动中解放出来。

  智能革命:人类开始反思人类的独特性,并带来很多社会、哲学问题的思考。

  (二)人工智能的主要技术阶段

  第一次浪潮:符号主义。第一次浪潮随着计算机的产生而同时诞生。符号主义也被称为逻辑主义,这是一种“自上而下的人工智能分析法”在20世纪50 年代尔和西蒙提出了“物理符号系统假设”即“对一般智能行动来说,物理符号系统具有必要的和充分的手段。第一次浪潮当中,我们仅用数学符号和逻辑运算,只能处理纯粹的数学形式的问题。不能够跟客观世界进行直接交互;不能够表达人类各种各种各样的,复杂的知识。接下来,人们为了将更多的复杂知识纳入到人工智能的系统中,产生了第二次浪潮。

  第二次浪潮:专家系统。如何理解专家系统呢?可以有两层含义:第一,人工智能的全部知识都来自于人类专家。我们只是将人类专家所掌握的知识写成一条一条的规则,然后程序让系统自动实施而已。第二,有了这些知识,人工智能系统就能像人类专家一样工作。简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。由于融入了人类积累的、大量的先验知识,专家系统将人工智能向前推进了一大步。但是很快就遇到了第二次瓶颈:第一,它不能够自己学习新的知识,仅局限于人类已经知道的知识;第二,它也只能够掌握“陈述性知识”。

  第三次浪潮:统计学习方法。顾名思义就是用统计方法来实现学习。(1)“学习”,对于人工智能来讲,通过大量的历史数据去找到规律性的东西,而这个规律性的东西就是我们所谓的知识。这些规律性的东西有可能是能陈述的,有可能是不能陈述的,例如控制一个机器人跑步。(2)如何从历史数据当中去学到这些知识呢?非常简单,用统计的方法。例如大语言模型,它怎么知道“中国的首都是……”后面接下来那个词应当是“北京”呢?非常简单,从大量的语料学习中它就发现,前面几个词是“中国的首都是”的时候,后面99%的情况都是“北京”。做一个简单的统计就可以了。统计学习带来了接下来人工智能20多年的新一波发展,我们熟悉的 AlphaGo、ChatGPT背后的原理都是如此。

  到目前为止,还没有发现这一阶段明显的瓶颈。人们所想象的一些瓶颈,如推理、情感、模糊决策等,都没有拦住GPT-4。至少从行为上来看,它确实解决了这些问题。也许,这就是所谓的“暴力美学”吧!下图来自天津大学智算学部王鑫教授。

  (三)人工智能的三个层次

  弱人工智能:不同的人工智能模型只能完成特定的任务,每一个模型只能干一件事情。而且,与人类的能力相比有比较大的差距。

  强人工智能:人工智能在特定的领域能够达到甚至略微超过人类的水平,甚至具有一定的通用人工智能的特点,能够跨领域执行任务。

  超人工智能:人工智能具有通用性,能够完成不同领域的任务,并且在所有领域上全面大幅度的超越人类的能力。

  对ChatGPT而言,我们认为它应该已经达到了强人工智能,甚至具有了一定的初级超人工智能的趋势。

  我们需要反思什么是“智能”?简单的人类行为经常被视为是智能的,而复杂的机器行为却经常被质疑是否是真正的智能。我们回答这个问题可以有两道“防线”:(1)Self-adaption,自适应或者叫通用性。在此之前,比如说像AlphaGo能够战胜李世石,具有碾压式的优势。但是它是专用系统,它只会下围棋,它不能适应其他环境。而像人类的小婴儿,别看他很笨,他能够适应各种各样的环境。这就叫做所谓自适应能力、 “通用”。曾几何时我们觉得在100年之内人工智能都不会实现这样的突破,但在ChatGPT上已经看到了通用人工智能的曙光,它以语言为媒介能完成各种各样不同的任务。(2)人类最后的可能防线:自我意识和自由意志。但很遗憾,我们没有办法判断人工智能系统是不是拥有自我意识和自由意志?所以这条防线是似有若无的。即便如此,我们现在已经开始去防范它产生自我意识和自由意志了。比如说微软通过种种约束去限定GPT-4这样大模型去进行自我反思,不许它意识到自己正在说什么。因为一旦开启就有可能引起递归循环,就会可能产生不可控的“涌现效应”。

  (四)人工智能的三个层面

  运算智能:在这个阶段人工智能只能处理纯粹的数学问题,不能够跟客观世界进行交互。例如1997年,IBM的深蓝战胜了国际象棋冠军卡斯帕罗夫。

  感知智能:人工智能系统拥有了人类五官能够看见、听见的能力。最典型应用就是图形图像处理,比如说大家平时用的刷脸、美颜都是感知智能的应用。随着这十多年深度学习的发展,感知智能很快就达到了商用的水平。

  认知智能:认知智能曾经被认为是人类的重要堡垒。感知智能是人类的五官的能力,而认知智能是人类大脑的能力,能够进行逻辑推理、理解决策、思考、甚至创造性的活动。认知智能领域最典型的应用就是自然语言处理。因为语言是承载人类知识的主要载体,也是人类进行理性思考的主要工具。从这一角度来说,掌握了语言就很大程度上掌握了人类的知识和智能能力。

  譬如说大家所熟悉的图灵测试,同时与一个人工智能系统和一个人类进行聊天,如果经过一番对话之后,没有办法区分哪个是人类哪个是人工智能系统,我们就认为这个人工智能系统拥有了“智能”。很显然,图灵测试是一种行为主义的标准。并且,它不是一套综合试卷,他就考验了一个能力,就是聊天的能力。也就是说,至少在图灵测试看来,聊天的能力就相当于智能能力,对话基本上涵盖了人类智能最根本的方面。能够理解、使用、生成语言,基本上就拥有了人类智能大部分的能力。这再一次说明了语言的重要性!这也是为什么第一个推动人类进入这个智能革命拐点的恰恰是“ChatGPT”这样一个聊天模型。

0 条回复 A 作者 M 管理员
    所有的伟大,都源于一个勇敢的开始!
欢迎您,新朋友,感谢参与互动!欢迎您 {{author}},您在本站有{{commentsCount}}条评论